Abstract

The S(α, β) double-differential thermal neutron scattering law tabulated in Evaluated Nuclear Data File (ENDF) File 7 is, by convention, produced theoretically through fundamental scattering physics models. Currently, no published ENDF evaluations contain covariance data for S(α, β) or associated scattering cross sections. Furthermore, no accepted methodology exists for quantifying or representing these covariances. Thermal scattering cross sections depend on the interatomic structure and dynamics of the material. For many solids, the influence of these properties on inelastic scattering cross sections can be adequately described through the phonon energy spectrum. The phonon spectrum can be viewed as a probability density function and is commonly the fundamental input for calculating S(α, β). Probable variation in the shape of the phonon spectrum may be established that characterizes uncertainties in the physics models and methodology employed in its production. Through Monte Carlo sampling of perturbations from the reference phonon spectrum, an S(α, β) covariance matrix may be generated. With appropriate sensitivity information, the S(α, β) covariance matrix can be propagated to generate covariance data for differential and integral cross sections. In this work, hexagonal graphite is used as an example material for demonstrating the proposed procedures for analyzing, calculating, and processing uncertainty information for theoretically generated thermal neutron inelastic scattering data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.