Abstract
The fuzzy set theory and the rough set theory are two distinct but complementary theories that deal with uncertainty in data. The salient features of both the theories are encompassed in the domain of the fuzzy rough set theory so as to cope with the problems of vagueness and indiscernibility in real world data. This hybrid theory has been found to be a potential tool for data mining, particularly useful for feature selection. Most of the existing approaches to fuzzy rough sets are based on fuzzy relations. In this paper, a new definition for fuzzy rough sets in an information system based on the divergence measure of fuzzy sets is introduced. The properties of the fuzzy rough approximations are explored. Moreover, an algorithm for feature selection using the proposed approximations is presented and experimented using real data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.