Abstract
Surface roughness is crucial for the functional and aesthetic properties of mechanical components and must be carefully controlled during machining. However, predicting it under varying machining parameters is challenging due to limited experimental data and fluctuating factors like tool wear and vibration. This study develops a deep transfer learning model that incorporates the correlation alignment method and tool wear to enhance model generalization and reduce data acquisition costs. It utilizes multi-sensor data and the ResNet18 with a convolutional block attention module (CBAM-ResNet) to extract features with improved generalization and accuracy for monitoring milled surface roughness under varying conditions. The performance of the model is evaluated from different perspectives. First, the proposed model achieves high accuracy with fewer than 500 experimental samples from the target domain by using the CORAL module in the CBAM-ResNet model. This demonstrates the model's strong generalization capability by minimizing second-order statistical discrepancies between different datasets. Second, ablation experiments reveal a significant reduction in test error when incorporating CORAL and tool wear, highlighting their contributions to improved model generalization. Integrating tool wear information significantly reduces test errors across various transfer conditions, as it reflects changes in cutting force, vibration, and built-up edge formation. Third, comparisons with existing deep transfer models further emphasize the advantages of the proposed approach in improving model generalization. In summary, the proposed surface roughness model, which incorporates tool wear and multi-sensor signal features as inputs and employs feature transfer and CBAM-ResNet, demonstrates superior generalization and accuracy across various machining parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.