Abstract
Rough sets and fuzzy sets have been proved to be powerful mathematical tools to deal with uncertainty, it soon raises a natural question of whether it is possible to connect rough sets and fuzzy sets. The existing generalizations of fuzzy rough sets are all based on special fuzzy relations (fuzzy similarity relations, T-similarity relations), it is advantageous to generalize the fuzzy rough sets by means of arbitrary fuzzy relations and present a general framework for the study of fuzzy rough sets by using both constructive and axiomatic approaches. In this paper, from the viewpoint of constructive approach, we first propose some definitions of upper and lower approximation operators of fuzzy sets by means of arbitrary fuzzy relations and study the relations among them, the connections between special fuzzy relations and upper and lower approximation operators of fuzzy sets are also examined. In axiomatic approach, we characterize different classes of generalized upper and lower approximation operators of fuzzy sets by different sets of axioms. The lattice and topological structures of fuzzy rough sets are also proposed. In order to demonstrate that our proposed generalization of fuzzy rough sets have wider range of applications than the existing fuzzy rough sets, a special lower approximation operator is applied to a fuzzy reasoning system, which coincides with the Mamdani algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.