Abstract
This paper presents a general framework for the study of fuzzy rough sets in which both constructive and axiomatic approaches are used. In constructive approach, a pair of lower and upper generalized approximation operators is defined. The connections between fuzzy relations and fuzzy rough approximation operators are examined. In axiomatic approach, various classes of fuzzy rough approximation operators are characterized by different sets of axioms. Axioms of fuzzy approximation operators guarantee the existence of certain types of fuzzy relations producing the same operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.