Abstract
The primitive notions in rough set theory are lower and upper approximation operators defined by a fixed binary relation and satisfying many interesting properties. Many types of generalized rough set models have been proposed in the literature. This paper discusses the rough approximations of Atanassov intuitionistic fuzzy sets in crisp and fuzzy approximation spaces in which both constructive and axiomatic approaches are used. In the constructive approach, concepts of rough intuitionistic fuzzy sets and intuitionistic fuzzy rough sets are defined, properties of rough intuitionistic fuzzy approximation operators and intuitionistic fuzzy rough approximation operators are examined. Different classes of rough intuitionistic fuzzy set algebras and intuitionistic fuzzy rough set algebras are obtained from different types of fuzzy relations. In the axiomatic approach, an operator-oriented characterization of rough sets is proposed, that is, rough intuitionistic fuzzy approximation operators and intuitionistic fuzzy rough approximation operators are defined by axioms. Different axiom sets of upper and lower intuitionistic fuzzy set-theoretic operators guarantee the existence of different types of crisp/fuzzy relations which produce the same operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.