Abstract
In this paper, a pulse-clocked double edge-triggered D-flip-flop (PDET) is proposed. The PDET uses a split-output TSPC latch and when clocked by a short pulse train acts like a double edge-triggered flip-flop. The new double edge-triggered flip-flop uses only eight transistors with only one N-type transistor being clocked. Compared to other double edge-triggered flip-flops, PDET offers advantages in terms of speed, power, and area. Both total transistor count and the number of clocked transistors are significantly reduced to improve power consumption and speed in the flip-flop. The number of transistors is reduced by 56%-60% and the Area-Speed-Power product is reduced by 56%-63% compared to other double edge-triggered flip-flops. Simulations are performed using HSPICE in CMOS 0.5 /spl mu/m technology. This design is suitable for high-speed, low-power CMOS VLSI design applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.