Abstract

The measurement matrix used influences the performance of image reconstruction in compressed sensing. To enhance the performance of image reconstruction in compressed sensing, two different Gaussian random matrices were orthogonalized via Gram-Schmidt orthogonalization, respectively. Then, one was used as the real part and the other as the imaginary part to construct a complex-valued Gaussian matrix. Furthermore, we sparsified the proposed measurement matrix to reduce the storage space and computation. The experimental results show that the complex-valued Gaussian matrix after orthogonalization has better image reconstruction performance, and the peak signal-to-noise ratio and structural similarity under different compression ratios are better than the real-valued measurement matrix. Moreover, the sparse measurement matrix can effectively reduce the amount of calculation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.