Abstract
Compressed sensing seeks to recover a sparse or compressible signal from a small number of linear and non-adaptive measurements. Gaussian random matrix is a kind of fundamental measurement matrices, but its performance isn’t perfect because of more errors in recovery. This paper studies a new kind of matrix based on improving Gaussian random matrices. Measure sparse signals with improved matrices and recover original signals with orthogonal matching pursuit. Numerical experiments showed that the quality of recovered signal by improved measurement matrices is better than Gaussian random matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.