Abstract
Buttressed trees provide mechanical support for themselves and offer essential ecological functions, such as nutrient acquisition, while being one of the largest sources of volume or biomass estimation variation in tropical forests. In this study, we collected 51 buttressed trees from (33) Democratic Republic of Congo, (12) Indonesia, and (6) Costa Rica, including (48) point clouds, and (3) destructive measurement. Specifically, we compared the performance of the Alpha Shape Algorithm (ASA) and the Slice Triangulation (ST) method on buttress volume estimation based on 30 point clouds with two species. Six point clouds from Costa Rica were used to validate the 3D surface reconstruction method. Meanwhile, we developed three allometric models based on 36 point clouds: a diameter above the buttress-based (DAB, 39 to 203 cm) model, a diameter computed from the non-convex area (Darea130) model, and the convex hull perimeter (Dconvex130) of the breast height model. The developed models were validated with independent data, including (6) point clouds and (3) destructive measurements, to highlight the broader contextualization and application of these methods. Volume estimated by the ASA and ST showed a high agreement with the reference volume acquired using the Smalian formula (relative RMSE of 0.07 and 0.11, respectively, regardless of species effect). ASA was also robust when modeling trees with more and shallower horizontal buttresses. Darea130 was the most accurate predictor to estimate buttress volume, with a lower Akaike information criterion (−66.25) than DAB (−59.55) and Dconvex130 (30.56); however, DAB and Darea130 (relative RMSE of 0.21 and 0.23, respectively) showed similar performance when validated with independent datasets. Our results indicate that the ASA approach performs better than both the ST and allometric models used in this study. Furthermore, the ASA method can help correct the bias in the present and past estimates of volume and biomass of large trees, which are foundational components for understanding biomass allocation and dynamics in tropical forests contemporary fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.