Abstract
NanoSIMS technique allows to investigate the micro-spatial organization in complex structures in multiple scientific fields such as material science, cosmochemistry, and biogeochemistry. In soil biogeochemistry applications, NanoSIMS-based approaches aim to disentangle the interactions of organic matter (OM) and mineral phases in the heterogeneous soil microstructure. Investigating the spatial arrangement of distinct organic and mineral functional components is necessary to understand how these components interact and contribute to biogeochemical processes in soil systems. Identifying soil functional components within NanoSIMS measurements necessitates advanced and efficient data processing tools capable of accessibility and automation. We have developed a pre-processing tool to streamline NanoSIMS data preparation and handling. The tool is provided as an open-source software toolbox (NanoT). In addition, a two-step unsupervised segmentation method was developed to identify soil functional components based on NanoSIMS analyses. To illustrate the segmentation method, here we describe its application to two exemplary NanoSIMS measurements. This allows to distinguish mineral- and OM-dominated regions, as well as different mineral phases. To improve the detection of iron oxides and aluminosilicates, the 56Fe16O− channel was separately processed. The presented NanoSIMS-based processing workflow helps to disentangle functional components within a biogeochemically-diverse microstructure in soils and further warrants applications to a wide range of complex environmental samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.