Abstract
Continuous evaluation and monitoring of long-term energy usage and carbon emissions are essential for developing, implementing, and assessing regional carbon reduction efforts. This study presents a spatiotemporal analysis of carbon emission trends in the Yangtze River Delta Urban Agglomeration (YRDUA) from 1992 to 2019. Researchers used nighttime light data from the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS) and the National Polar-orbiting Partnership's Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) to assess the evolution of carbon emission patterns. Advanced spatial analysis methods, including geographic autocorrelation, geographical panel modeling, and spatial Markov chains, were applied to explore the spatial impacts, processes, and regional context of these trends. The results show: (1) Carbon emissions in the YRDUA increased by 262.56 %, with high-emission spheres and axial expansion. High-high emission clusters emerged in metropolitan areas, while low-low clusters formed in peripheral mountain regions. (2) Carbon emission types were stable (66.5 %), but 17.6 % showed higher emissions transitioning to lower, particularly in northeast Jiangsu. (3) The broader regional background had a stronger influence on the spatial impacts of carbon emissions than nearest neighbor effects, enhancing both outlier convergence and “club convergence” among similar regions. (4) Spatiotemporal patterns were shaped by the lock-in effect in low-carbon areas and spillover effects in high-carbon areas, with economic scale and industrial structure as key drivers. This study provides crucial insights for regional carbon reduction strategies in the YRDUA.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.