Abstract

Convolutional neural networks (CNNs) have shown strong learning capabilities in computer vision tasks such as classification and detection. Especially with the introduction of excellent detection models such as YOLO (V1, V2 and V3) and Faster R-CNN, CNNs have greatly improved detection efficiency and accuracy. However, due to the special angle of view, small size, few features, and complicated background, CNNs that performs well in the ground perspective dataset, fails to reach a good detection accuracy in the remote sensing image dataset. To this end, based on the YOLO V3 model, we used feature maps of different depths as detection outputs to explore the reasons for the poor detection rate of small targets in remote sensing images by deep neural networks. We also analyzed the effect of neural network depth on small target detection, and found that the excessive deep semantic information of neural network has little effect on small target detection. Finally, the verification on the VEDAI dataset shows, that the fusion of shallow feature maps with precise location information and deep feature maps with rich semantics in the CNNs can effectively improve the accuracy of small target detection in remote sensing images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.