Abstract

AbstractThis article combines a Neural Network (NN) algorithm with the Finite Difference Time Domain (FDTD) technique to estimate the eigenfunctions in quantum devices. A NN based on the Least Mean Squares (LMS) algorithm is combined with the FDTD technique to provide a first approach to the confined states in quantum wires. The proposed technique is in good agreement with analytical results and is more efficient than FDTD combined with the Fourier Transform. This technique is used to calculate a numerical approximation to the eigenfunctions associated to quantum wire potentials. The performance and convergence of the proposed technique are also presented in this article. © 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 2017–2022, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.24562

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.