Abstract
Currently in CAD/CAE/CAM systems it is possible to create 3D design virtual models which are able to capture certain amount of knowledge. These models are especially useful in an automation of routine design tasks. These models are known as self-generative or auto generative and they can behave in an intelligent way. The main difference between the auto generative and fully parametric models consists in the auto generative models ability to self-organizing. In this case design model self-organizing means that aside from the possibility of making of automatic changes of model quantitative features these models possess knowledge how these changes should be made. Moreover they are able to change quality features according to specific knowledge. In spite of undoubted good points of self-generative models they are not so often used in design constructional process which is mainly caused by usually great complexity of these models. This complexity makes the process of self-generative time and labour consuming. It also needs a quite great investment outlays. The creation process of self-generative model consists of the three stages it is knowledge and information acquisition, model type selection and model implementation. In this paper methods of the computer aided design with self-generative models in NX Siemens CAD/CAE/CAM software are presented. There are the five methods of self-generative models preparation in NX with: parametric relations model, part families, GRIP language application, knowledge fusion and OPEN API mechanism. In the paper examples of each type of the self-generative model are presented. These methods make the constructional design process much faster. It is suggested to prepare this kind of self-generative models when there is a need of design variants creation. The conducted research on assessing the usefulness of elaborated models showed that they are highly recommended in case of routine tasks automation. But it is still difficult to distinguish which method of self-generative preparation is most preferred. It always depends on a problem complexity. The easiest way for such a model preparation is this with the parametric relations model whilst the hardest one is this with the OPEN API mechanism. From knowledge processing point of view the best choice is application of the knowledge fusion.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have