Abstract

Before the practical application of the Li–O2 battery (LOB), a critical issue regarding large overpotential upon charging (which causes irreversible side reactions and low energy efficiency) should be resolved. The utilization of redox mediators (RMs) which oxidatively decompose insulating discharge product, Li2O2, is one promising solution to address this issue. However, the soluble RMs can easily diffuse to and react with the Li metal anode (encountering Li dendrites is even worse). Here, a chemical self-assembly strategy is introduced into the fabrication of the iodide-redox-phobic and Li-ion-philic membrane for LOBs, in which the electronegative δ-MnO2 layer is in-situ grown on commercial polyethylene (PE) membrane (MnO2@PE). The electronegative MnO2 layer can simultaneously repel the shuttle of iodide species and regulate the uniform Li + deposition. Controlling cut-off capacity of 1000 mAh g−1, iodide-redox-based LOB with MnO2@PE demonstrates low overpotentials (∼0.7 V vs. Li+/Li), dendrite-suppressing capability, as well as impressive long-term reversibility over 500 cycles (2000 h), which urges the LOB technology competitive among the next-generation rechargeable power systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.