Abstract

A class of counting problems asks for the number of regions of a central hyperplane arrangement. By duality, this is the same as counting the vertices of a zonotope. Efficient algorithms are known that solve this problem by computing the vertices of a zonotope from its set of generators. Here, we give an efficient algorithm, based on a linear optimization oracle, that performs the inverse task and recovers the generators of a zonotope from its set of vertices. We also provide a variation of that algorithm that allows to decide whether a polytope, given as its vertex set, is a zonotope and when it is not a zonotope, to compute its greatest zonotopal summand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.