Abstract

This paper proposes a robust linear hybrid controller by combining the active disturbance rejection and proportional–integral controllers (ADRC+PI) for inverter-based arc suppression coils (ASCs) in resonant grounded distribution power systems (RGDPSs). Resonant grounding techniques are used in real power distribution networks for reducing the fault current in order to reduce the severity of powerline bushfires in the presence of single line-to-ground (SLG) faults. The severity of bushfire hazards due to these SLG faults depends on environmental conditions (e.g., wet or dry grounds) that define the behavior of the system. With respect to these conditions, the fault resistance will be lower for wet grounds for which the system model comprises one dominant pole while dry grounds force the system to have one dominant zero with two dominant poles. By considering the circumstances of such groundings, the behavior of power distribution systems changes when there are SLG faults. This paper investigates a detailed analysis in frequency- and time-domains to design a robust arc mitigator based on the hybrid ADRC+PI controller. Furthermore, the robustness of the proposed hybrid controller against the input disturbances is explored in terms of transient and steady-state stability analysis and the results are compared with the ADRC and PI controllers. In addition, the performance of the proposed hybrid ADRC+PI controller is justified by utilizing virtual- and real-time implementations in a digital signal processor (DSP) through MATLAB/SIMULINK platform on a 22 kV (line-to-line) RGDPS under distinctive grounding conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.