Abstract
The aluminum induced layer exchange (ALILE) process allows the formation of thin polycrystalline Si (poly-Si) layers of large grain size on foreign substrates such as glass at low process temperatures. This paper is devoted to a computer simulation study of the kinetics of the ALILE process taking into account the mechanisms of its separate stages: Si diffusion in the AlOx membrane, nucleation and growth of grains, and the formation of preferential (100) orientation. The characteristics of the ALILE process are explained based on the evolution of the Si concentration within the Al layer. In particular it is demonstrated that the characteristic suppression of nucleation after short annealing times results from a decrease in the Si concentration in the Al layer due to the growth of existing grains. A number of important parameters of ALILE process are estimated comparing the results of simulation to the experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.