Abstract

For a fixed positive integer n consider continuous functions K1,⋯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$K_1,\\dots $$\\end{document}, Kn:[-1,1]→R∪{-∞}\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ K_n:[-1,1]\\rightarrow {{\\mathbb {R}}}\\cup \\{-\\infty \\}$$\\end{document} that are concave and real valued on [-1,0)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$[-1,0)$$\\end{document} and on (0, 1], and satisfy Kj(0)=-∞\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$K_j(0)=-\\infty $$\\end{document}. Moreover, let J:[0,1]→R∪{-∞}\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$J:[0,1]\\rightarrow {{\\mathbb {R}}}\\cup \\{-\\infty \\}$$\\end{document} be upper bounded and such that [0,1]\\J-1({-∞})\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$[0,1]\\setminus J^{-1}(\\{-\\infty \\})$$\\end{document} has at least n+1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$n+1$$\\end{document} elements, but it is arbitrary otherwise. For x0:=0<x1<⋯<xn≤xn+1:=1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$x_0:=0<x_1<\\dots < x_n \\le x_{n+1}:=1$$\\end{document}, so called nodes, and for t∈[0,1]\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$t\\in [0,1]$$\\end{document} consider the sum of translates function F(x1,…,xn,t):=J(t)+∑j=1nKj(t-xj)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$F(x_1,\\ldots ,x_n,t):=J(t)+\\sum _{j=1}^n K_j(t-x_j)$$\\end{document}, and the vector of interval maximum values mj:=mj(x1,…,xn):=maxt∈[xj,xj+1]F(x1,…,xn,t)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$m_j:=m_j(x_1,\\ldots ,x_n):=\\max _{t\\in [x_j,x_{j+1}]}F(x_1,\\ldots ,x_n,t)$$\\end{document} (j=0,1,…,n\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$j=0,1,\\ldots ,n$$\\end{document}). We describe the structure of the arising interval maxima as the nodes run over the n-dimensional simplex. Applications presented here range from abstract moving node Hermite–Fejér interpolation for generalized algebraic and trigonometric polynomials via Bojanov’s problem to more abstract results of interpolation theoretic flavour.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call