Abstract

The existing results of curve degree elevation mainly focus on the degree of algebraic polynomials. The paper considers the elevation of degree of the trigonometric polynomial, from a Bezier curve on the algebraic polynomial space, to a C-Bezier curve on the algebraic and trigonometric polynomial space. The matrix of degree elevation is obtained by an operator presentation and a derivation pyramid. It possesses not a recursive presentation but a direct expression. The degree elevation process can also be represented as a corner cutting form.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.