Abstract

A high-frequency fully differential BiCMOS operational amplifier design for use in switched-capacitor circuits is presented. The operational amplifier is integrated in a 3.0-GHz, 2- mu m BiCMOS process with an active die area of 1.0 mm*1.2 mm. This BiCMOS op amp offers an infinite input resistance, a DC gain of 100 dB, a unity-gain frequency of 90 MHz with 45 degrees phase margin, and a slew rate of 150 V/ mu s. The differential output range is 12 V. The circuit is operated from a +or-5-V power supply and dissipates 125 mW. The op amp is unity-gain stable with 7 pF of capacitive loading at each output. The op amp is a two-stage, pole-split frequency compensated design that uses a PMOS input stage for infinite input resistance and an n-p-n bipolar second stage for high gain and high bandwidth. The frequency compensation network serves both the differential- and common-mode amplifiers so the differential- and common-mode amplifier dynamics are similar. A dynamic switched-capacitor common-mode feedback scheme is used to set the output common-mode level of the first and second stages. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.