Abstract
Successful modeling and prediction depend on effective methods for the extraction of domain-relevant variables. This paper proposes a methodology for identifying domain-specific terms. The proposed methodology relies on a collection of documents labeled as relevant or irrelevant to the domain under analysis. Based on the labeled document collection, we propose a supervised technique that weights terms based on their descriptive and discriminating power. Finally, the descriptive and discriminating values are combined into a general measure that, through the use of an adjustable parameter, allows to independently favor different aspects of retrieval such as maximizing precision or recall, or achieving a balance between both of them. The proposed technique is applied to the economic domain and is empirically evaluated through a human-subject experiment involving experts and non-experts in Economy. It is also evaluated as a term-weighting technique for query-term selection showing promising results. We finally illustrate the applicability of the proposed technique to address diverse problems such as building prediction models, supporting knowledge modeling, and achieving total recall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.