Abstract

2-D convolution has been used as a subsystem for filtering and enhancement in a wide range of signal and image processing applications. It is not only a memory intensive operation but also a compute intensive process. The previous efforts to improve the performance of 2-D convolution have primarily focused on the memory access challenges. However, the convolver’s performance is highly dependent on the efficient design of the computation units, which can be enhanced significantly by employing some techniques such as pipelining. In this brief, a pipelined with low pixel access rate architecture for implementation of 2-D convolution is presented. Compared to the conventional convolvers, the proposed design involves a fixed (independent to the problem/kernel) size, and a significantly shorter critical path specifically for large kernel sizes where the proposed convolver works with 283-MHz clock frequency, on a Xilinx Virtex-7 (XC7V2000t) field-programmable gate array, for a ${3\times 3}$ kernel. Additionally, the required pixel access rate of the new scheme is less than that of the state-of-the-art methods, which is only 849 Mb/s for a ${3\times 3}$ kernel and 8-bit pixels. The improvements in the critical path delay and the required pixel access rate are obtained without significant increase in the resource utilization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.