Abstract
A neutron spectrometer using a high pressure 3He ionization chamber has been designed and used to measure the neutron spectrum from an ohmically heated deuterium plasma. The resolution of the spectrometer at 2.45 MeV is determine to be 46 keV full width at half-maximum (fwhm). Particular attention has been paid to optimizing the detector shielding and collimation to reject thermal and epithermal neutrons scattered from the tokamak structure. As a result, measurements indicate that the ratio of the number of counts in the 2.45 MeV peak to the total number of detected neutron events is 1 67 . For the 8 μs amplifier time constant used, a count rate as high as 44 counts per second has been achieved in the thermonuclear peak. The observed spectra have been compared with calculated spectra using the MCNP Monte Carlo Neutral Particle Transport code and they show good agreement. There is little evidence of neutrons produced from photoneutron reactions or electrodisintegration. It has been possible to confirm that the shape of the thermonuclear peak is consistent with the Gaussian shape predicted and that the ion temperature as determined from the line width is consistent with other Alcator C ion temperature diagnostics, and follows the trends predicted by the theory of Doppler line broadening.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have