Abstract

Due to the extremely inert surface of polyester (PET) fabric, a toxic and traditional resorcinol-formaldehyde-latex (RFL) dipping solution is always necessary in the rubber composite industry. Unfortunately, other effective methods for fabric surface treatment are in urgent need to improve the poor bonding interface between the fabric and the rubber matrix. In our study, a facile way to modify PET fabric was developed. Specifically, the fabric was treated by an alkaline solution and a coupling agent with magnetic agitation. Afterwards, the treated fabric/rubber composites were prepared through a co-vulcanization process. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and thermogravimetric analysis (TGA) were used to characterize the surface chemical composition of the modified fabrics. The adhesion behavior was analyzed by the peel test. The results showed that the fabric surface was successfully grafted with a coupling agent, and the peel strength reached 9.8 N/mm after KH550 treatment, which was an increase if 32% compared with that of the original fabric/rubber composite. In addition, the vulcanization rate and interfacial fracture mechanism are also researched.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.