Abstract

Wear is a major issue in industry, particularly with metal components. Therefore, it is crucial to investigate methods that offer increased resistance to this phenomenon. In this research, three coating systems (pure WC-CoCr and WC-CoCr/NiCrFeSiBC+Mo, 88:12 and 83:17 wt.%) were thermally sprayed on an AISI 1018 steel substrate through the High-Velocity Oxygen Fuel (HVOF) process. The coatings were characterized using a field emission scanning electron microscope (FESEM) equipped with the energy dispersive spectroscope (EDS) and X-ray diffractometry (XRD). An analysis of the wear rate for ball-on-flat linear reciprocating sliding tribological tests for the coatings was also carried out. The coating microstructure presents well-dispersed NiCrFeSiBC splats. The WC-CoCr/NiCrFeSiBC+Mo, 88:12, system has the highest wear resistance, decreasing by 30.2% at high loads compared to commercial WC-CoCr CERMETs, and also exhibits the highest fracture toughness. Analysis of wear tracks shows that the material removal at all charges occurred mainly by an abrasive wear mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.