Abstract

A novel biomimetic surface modification method for meta-aramid (MPIA) fibers and the improvement on adhesion with rubber matrix was demonstrated. Inspired by the composition of adhesive proteins in mussels, we used dopamine (DOPA) self-polymerization to form thin, surface-adherent poly(dopamine) (PDA) films onto the surface of MPIA fibers simply by immersing MPIA fibers in a dopamine solution at room temperature. An epoxy functionalized silane (KH560) grafting was then carried out on the surface of the poly(dopamine)-coated MPIA, either by a "one-step" or "two-step" method, to introduce an epoxy group onto the MPIA fiber surface. The surface composition and microstructure of the modified MPIA was characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results indicated successful grafting of KH560 on the PDA-coated MPIA surface. A single-fiber pull-out test was applied to evaluate the adhesion of MPIA fibers with the rubber matrix. Compared with the untreated MPIA fibers, the adhesion strength between the modified MPIA fibers by "one step" method with rubber matrix has an increase of 62.5%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.