Abstract

Extrusion-based polymer three-dimensional (3D) printing, specifically fused deposition modeling (FDM), has been garnering increasing interest from industry, as well as from the research and academic communities, due to its low cost, high speed, and process simplicity. However, bed adhesion failure remains an obstacle to diversifying the materials and expanding the industrial applications of the FDM 3D-printing process. Therefore, this study focused on an investigation of the surface treatment methods for aluminum (Al) foil and their applications to 3D printer beds to enhance the bed adhesion of a 3D-printed polymer filament. Two methods of etching with sodium hydroxide and anodization with phosphoric acid were individually used for the surface treatment of the Al foil beds and then compared with an untreated foil. The etching process removed the oxide layer from the Al foil and increased its surface roughness, while the anodizing process enhanced the amount of hydroxide functional groups and contributed to the formation of nano-holes. As a result, the surface-anodized aluminum foil exhibited a higher affinity and bonding strength with the 3D-printed polymers compared with the etched and pristine foils. Through the increase in the success rate in 3D printing with various polymers, it became evident that utilizing surface-treated Al foil as a 3D printer bed presents an economical solution to addressing bed adhesion failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.