Abstract

A novel scanning electron microscope (SEM) method is presented for high contrast identification of each layer of pyramidal graphene domains grown on copper. We obtained SEM images by combining the advantages of the high resolution property of the secondary electron signal and the elemental sensitivity of the backscattering electron signal. Through this method, we investigated the difference in the growth mechanisms of mono-layer and few-layer graphene. Due to different lattice mismatches, both the surface adsorption process and the epitaxial growth process existed under the atmospheric growth conditions. Moreover, the copper oxidation process can be easily discovered. It is obvious from the SEM images that the graphene greatly delayed the oxidation process of the copper surface. Finally, the nucleation and growth speed of graphene domains was found to depend on the linear array distribution of surface ledges and terraces of annealed rolled copper foil. This result explains the linear rows of graphene during the growth process and accords with theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.