Abstract

Photovoltaic (PV) energy systems are a leading type of renewable energy systems globally. Predicting PV energy production accurately is crucial for maintaining efficient energy grids, making informed decisions in the energy market, and reducing maintenance costs. To ensure high accuracy and optimal production, it is essential to monitor and analyze these variables regularly. Solar radiation and temperature are two meteorological variables that directly affect the quantity of PV energy generated in PV facilities. The Performance Ratio (PR) is a critical parameter for assessing PV plant performance. A comprehensive model was constructed in this study to forecast solar radiation and temperature using multiple machine learning methods, including Instance-Based K-Nearest Neighbor Algorithm (IBK), Linear Regression, Random Forests, Random Tree, Multilayer Perceptron (MLP), and MLP Regression. Moreover, we used time series approaches, such as Simple Exponential Smoothing (SES), Error-Trend-Seasonality (ETS), Autoregressive Integrated Moving Average (ARIMA) and Holt Winter's Seasonal Method (HWES) models for PV systems prediction. Initially, we conducted daily forecasts as well as 1-step ahead forecasts at 5-minute intervals for both solar radiation and temperature. It is crucial to subject both variables to the same methodology in order to construct precise models for forecasting PV. Secondly, we compared the predicted values of solar radiation and temperature with the actual energy yield of the power plant to calculate energy production. Subsequently, a relative analysis of data mining models and time series models have been performed depending on the statistical error criteria like RMSE, MAPE, MABE, MAE, MSE, and direction accuracy (DAC). 

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.