Abstract

In this paper, a new series connection topology is introduced for silicon carbide (SiC) MOSFETs. In the topology, with a single external gate drive, three series-connected SiC MOSFETs are synchronously driven. The operating principle of the proposed topology is analyzed and presented. In order to improve the current capability of the module, parallel connection of two SiC devices are also demonstrated. A 3600 V/80 A series-parallel-connected configuration with three rows in a series and two branches in parallel is constructed with six 1200 V/40 A discrete SiC MOSFETs. Switching behavior of the configuration is completed at 2300 V/78 A. Experimental results verify the validity and feasibility of the proposed topology. Analysis based on experimental results for the circuit switching speed and switching losses is given. Finally, such a series-parallel-connected circuit is integrated in a SiC MOSFETs module, capable of 3600 V/80 A. The switching characteristics of the module are compared to the discrete configuration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call