Abstract

This article reports a single-loop full-rate bang-bang clock and data recovery (BBCDR) circuit supporting a four-level pulse amplitude modulation (PAM-4) pattern. We eliminate both the reference and the separate frequency detector (FD) by deliberately adding two fixed strobe points in the bang-bang phase detector (BBPD) curve via a clock-selection scheme. As such, we can achieve a wide frequency-capture range in a single-sided FD polarity. The BBPD also incorporates a hybrid control circuit to automate the frequency acquisition over a wide frequency range. Prototyped in a 28-nm CMOS, the proposed BBCDR occupies a tiny area of 0.0285 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and exhibits a 23-to-29-Gb/s capture range. The acquisition speed [8.2 Gb/s/ <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text{s}$ </tex-math></inline-formula> ] and energy efficiency (0.68 pJ/bit) compare favorably with the state of the art.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.