Abstract

Clutches are designed to engage and disengage the transmission system from the engine when a vehicle is being driven away from a standstill and when the gearbox gear changes are necessary. The gradual increase in the transfer of engine torque to the transmission must be smooth. The torque capacity of a friction clutch can be raised by increasing the coefficient of friction of the rubbing materials, the diameter, and/or the spring thrust sandwiching the driven plate. Lining life can be improved by increasing the number of pairs of rubbing surfaces because wear is directly related to the energy dissipation per unit area of contact surface. Cerametallic button friction facings are becoming increasingly popular for heavy duty clutches. Instead of a full annular shaped lining, as with organic (asbestos or substitute) friction materials, four or six cerametallic trapezoidal-shaped buttons are evenly spaced on both sides around the driven plate. The cerametallic material is made from a powder consisting mainly of ceramic and copper. It is compressed into buttons and heated so that the copper melts and flows around each particle of solid ceramic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.