Abstract

This work presents the 10 MeV protons irradiation effects on 4H-SiC MOSFETs at different fluences. MOSFETs main electrical parameters, such as the channel mobility (µEFF), threshold voltage (VTH), transconductance (gm) and subthreshold current, were analyzed using the time bias stress instability (BSI) technique. Applying this method allowed us to study the effect of carriers interaction with generated interface traps, whether in the bulk or at the interface. Improvements, such as VTH stabilization in time and a significant increase of the µEFF at high fluencies, have been noticed. We assume that this behavior is connected with the atomic diffusion from the SiO2/SiC interface, towards the epilayer during proton irradiation. These atoms, in majority Nitrogen, may create other bonds by occupying various vacancies coming from Silicon and Carbon’s dangling bond. Therefore, by enhancing the passivated Carbon atoms number, we show that high irradiation proton could be a way to improve the SiO2/SiC interface quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call