Abstract

A low value of Schottky barrier height (SBH) ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\Phi _{\textit{B}}\text{)}$</tex-math> </inline-formula> is highly desired to further reduce the power loss in 4H-SiC junction barrier Schottky (JBS) diodes; however, the reduced <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\Phi _{\textit{B}}$</tex-math> </inline-formula> results in serious leakage current ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\textit{I}_{\textit{R}}\text{)}$</tex-math> </inline-formula> when blocking high voltages. In this work, a tunable low <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\Phi _{\textit{B}}$</tex-math> </inline-formula> of 0.92–0.98 eV with an ideal factor <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\textit{n}$</tex-math> </inline-formula> <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$=$</tex-math> </inline-formula> 1.02–1.03 was first realized through effectual rapid thermal annealing (RTA) methods and combined with a trench-assisted stage-style p-type implants taking advantage of dead region for current flow to resolve the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\textit{I}_{\text{R}}$</tex-math> </inline-formula> issue. Numerical simulation demonstrated the superiority of this promising strategy in alleviating the Schottky interface electric field ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\textit{E}_{\text{S}}\text{)}$</tex-math> </inline-formula> and suppressing <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\textit{I}_{\textit{R}}$</tex-math> </inline-formula> without constraining the forward current flow. Based on this practical strategy, the fabricated device achieved one order of magnitude less <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\textit{I}_{\textit{R}}$</tex-math> </inline-formula> at 25 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$^{\circ}$</tex-math> </inline-formula> C and 220% enhancement of breakdown voltage ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\textit{V}_{\textit{B}}\text{)}$</tex-math> </inline-formula> at 175 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$^{\circ}$</tex-math> </inline-formula> C in contrast to the conventional low-barrier one. In addition, benefiting from the low <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\Phi _{\textit{B}}$</tex-math> </inline-formula> , the device achieved an ultralow turn-on voltage of 0.47 eV and a remarkable forward voltage drop ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\textit{V}_{\textit{F}}\text{)}$</tex-math> </inline-formula> of 1.36 V extracted at 20 A, indicating 14% lower conduction loss than the titanium-based JBS diodes with the same device configuration. This novel device structure incorporating low-barrier Schottky contact metal and trench-assisted stage-style p-implants (SPs) in the dead region of current flow suggests a promising way to develop more advanced 4H-SiC JBS diodes in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.