Abstract
The main processes occurring during vacancy generation in aluminum in the presence of hydrogen are described on the base of ab initio methods using the meta-functional SCAN. It was shown that hydrogen reduces the vacancy generation energy from 2.8 eV to 0.8 eV. In this case, eight hydrogen atoms located in the tetrahedral voids of the lattice around one aluminum atom make it much easier for it to move to the interstitial site. In accordance with the kinetic concept of embrittlement the dependence of the activation energy of hydrogen embrittlement of aluminum is calculated on the concentration of hydrogen and temperature. It is shown that hydrogen reduces the time of aluminum embrittlement only if its concentration in aluminum is more than critical one (~3⋅〖10〗^(-4) at T=293 K).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.