Abstract

Hydrogen penetrates into the metal and causes Hydrogen embrittlement due to the increase in hydrogen concentration. This is caused by the local stress fields such as residual stress field at the site of welding or local stress field around a crack tip. It accompanied with incubation time of several hours since the components were exposed to hydrogen atmospheric condition. This incubation time is time lag of hydrogen diffusion and concentration at the site where the hydrogen embrittlement occurs. Therefore, clarification of the hydrogen diffusion behavior is important to prevent from fracture of hydrogen embrittlement. In this paper, the numerical analyses of hydrogen diffusion around weld part including HAZ (Heat Affected Zone) under residual stress coupled with that of heat transfer during the cooling process before and after weld were conducted and the behaviors of hydrogen concentration were analyzed. On the basis of these analyses, the method of heat treatment to prevent from hydrogen concentration at the weld part was investigated. Results obtained by these analyses showed that pre weld heat treatment is effective in the prevention of hydrogen concentration and combined pre weld heat treatment with post weld heat treatment was found to be the most effective treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call