Abstract
본 연구는 저니키 모멘트 서술자를 이용하여 객체 쌍의 기수성에 영향을 받지 않고 M:N 면 객체 쌍의 형상 유사도를 측정할 수 있는 방법을 제안한다. 제안된 형상 유사도는 저니키 기저함수에 객체 집합의 공간적 분포 영역을 투영하여 얻어지는 모멘트를 이용하기 때문에 형상을 구성하는 객체들의 기수성에 영향을 받지 않는다. 또한 낮은 차수의 기저함수에 대응되는 모멘트는 전역적인 형상을 표현하고, 높은 차수의 기저함수에 대응되는 모멘트는 지역적인 형상을 표현하기 때문에 원형상과 유사한 수준으로 형상을 복원할 수 있는 차수까지의 모멘트를 이용함으로써 효과적으로 형상을 서술하고 비교하는 것이 가능하다. 제안된 방법은 서울시 지역의 도로명주소 지도와 차량용 항법 지도의 건물 객체를 대상으로 적용 및 평가하였다. 기존 중첩면적비를 이용한 유사도에 비하여 제안된 유사도는 기수성의 변화에 강건함을 확인할 수 있었다. In this paper, we propose a new shape similarity measure for M:N polygon pairs regardless of different object cardinalities in the pairs. The proposed method compares the projections of two shape functions onto Zernike polynomial basis functions, where the shape functions were obtained from each overall region of objects, thus not being affected by the cardinalities of object pairs. Moments with low-order basis functions describe global shape properties and those with high-order basis functions describe local shape properties. Therefore several moments up to a certain order where the original shapes were similarly reconstructed can efficiently describe the shape properties thus be used for shape comparison. The proposed method was applied for the building objects in the New address digital map and a car navigation map of Seoul area. Comparing to an overlapping ratio method, the proposed method's similarity is more robust to object cardinality.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have