With water as the elution solvent, zwitterionic solutes and polyols were retained on HPLC columns, more than was water, by totally hydrophobic packing materials. Relative retentions were systematically affected by oxygen functional groups in the packing material, explicable as specific retention of water. Reproducible elution sequences of 20 solutes at a variety of hydrophobic surfaces (aromatic and both long- and short-alkyl aliphatic surfaces) showed there is a general process, consistent with interactions with hydration water at the surface having solvent properties distinct from bulk water. Early eluting solutes included glycine, sarcosine and taurine. Glycine betaine followed both these and N, N-dimethylglycine. The natural betaines propionobetaine and dimethylsulfoniopropionate also preceded glycine betaine. Dimethylsulfoxide was strongly retained, as (to a lesser extent) was proline betaine. Polyols eluted in the sequence sorbitol, trehalose, glycerol. Changes in the chemical nature of the surface or base material affected relative retentions of water and solutes. The presence of hydrogen-bonding functions increased retention of polyols, as well as water, relative to zwitterionic solutes. Specific effects with some solutes may be related to inconsistencies seen in biological systems. Pressures up to 8 MPa did not affect relative retention, constraining models based on the formation of low-density water.
Read full abstract