Abstract Aim Owalla Reservoir, one of the largest and oldest man-made lakes in Osun State supplies potable water to many towns in the state including the state capital, Osogbo. Active fishing activities also takes place in the lake. Inspite of the importance of the reservoir, information on the planktonic community and physico-chemical water quality are scarce. Therefore, this study investigated the water quality and plankton composition of Owalla Reservoir, Osun State, Nigeria, from October 2012 to November 2013 with a view to providing baseline information on limnology of the reservoir. Methods Seven sampling stations (designated Stations 1-7) were established as representatives of the zones and regions of the reservoir and sampling was conducted quarterly. At Stations 1 and 3, only surface water samples were collected while water samples were collected from the surface, mid-depth and close to the bottom at other stations. Samples for total plankton and physico-chemical water quality were analyzed using standard methods. Results The result of the study showed that mean dissolved oxygen (P<0.001), biochemical oxygen demand, conductivity, pH (P<0.001), and alkalinity were higher at the surface of the reservoir. As regards seasonal variation, alkalinity, biochemical oxygen demand had the higher mean values during the rainy season. Also, acidity, dissolved oxygen, and pH showed significantly (P<0.001) higher values during the rainy season. One hundred and thirty-seven (137) taxa of phytoplankton and 39 taxa of zooplankton were recorded from the reservoir. The horizontal pattern of variation showed an increase in the mean abundance of most of phytoplankton groups from inflow to the dam area while vertical variation showed a decrease in mean abundance from surface to the bottom of the reservoir. Most of the phytoplankton and zooplankton taxa were more abundant during the dry season than in the rainy season. Conclusions The study concluded that all the monitored physico-chemical water quality parameters were within the guide level range as of the World Health Organisation (WHO) for drinking water, Owalla Reservoir is qualitatively rich in both phytoplankton and zooplankton and the reservoir can support a viable aquatic community and sustainable fishery production.
Read full abstract