Abstract

The Strait of Georgia, Canada, has complex interactions among natural and human pressures that confound understanding of changes in this system. We report on the interannual variability in biomass of 12 zooplankton taxonomic groups in the deep (bottom depths greater than 50 m) central and northern Strait of Georgia from 1996 to 2018, and their relationships with 10 physical variables. Total zooplankton biomass was dominated (76%) by large-sized crustaceans (euphausiids, large and medium size calanoid copepods, amphipods). The annual anomaly of total zooplankton biomass was highest in the late 1990s, lowest in the mid-2000s, and generally above its climatological (1996-2010) average after 2011, although many individual groups had different patterns. Two latent trends (derived from dynamic factor analyses) described the variability of annual biomass anomalies underlying all zooplankton groups: a U-shaped trend with its minimum in the mid-2000s, and a declining trend from 2001 to 2011. Two latent trends also described the physical variables. The variability represented by these four latent trends clustered into two periods: 1996-2006, with generally declining zooplankton biomass and increasing salinities, and 2007-2018, with increasing zooplankton biomass and decreasing salinities. ARIMA modelling showed sea surface salinity at Entrance Island in the middle Strait of Georgia, the Pacific Decadal Oscillation, and the peak date of the spring phytoplankton bloom were significantly related to the two latent zooplankton trends. ARIMA models comparing zooplankton and physical variables with the marine survivals of four salmon populations which enter the Strait as juveniles (Chinook: Cowichan River, Puntledge River, Harrison River; Coho: Big Qualicum River) all included zooplankton groups consistent with known salmon prey; prominent among the physical variables were sea surface salinity and variables representing the flow from the Fraser River. These regressions explained (adjR2) 38 to 85% of the annual variability in marine survival rates of these salmon populations over the study time period. Although sea temperature was important in some relationships between zooplankton biomass and salmon marine survival, salinity was a more frequent and more important variable, consistent with its influence on the hydrodynamics of the Strait of Georgia system.

Highlights

  • The Strait of Georgia, part of the Salish Sea in southwestern British Columbia, Canada, is a crucial marine system for the ecology, economy, and culture of this region, and beyond

  • The annual biomass anomalies are a better representation of annual biomass patterns because they take account of seasonal differences in sampling. These annual biomass anomalies show that the highest total zooplankton biomass was in 1998, which declined to a minimum in 2005, and recovered to mostly positive anomalies since 2011 (Fig 2D)

  • Within the years examined in this study (1996–2018), the mid 2000s was a period of low biomass for most (70%) of the zooplankton taxonomic groups sampled in the deep areas of the Strait of Georgia

Read more

Summary

Introduction

The Strait of Georgia, part of the Salish Sea in southwestern British Columbia, Canada, is a crucial marine system for the ecology, economy, and culture of this region, and beyond. It has been very productive, with special and endangered populations of fish and marine mammals [1]. The major source of freshwater into the Strait is from the Fraser River, which originates in the interior of British Columbia. It is a snow-melt-dominated system, with peak flows of freshwater into the Strait of Georgia typically during June. The Strait is predominately an estuarine system, with residence times for water in the upper 50 m on the order of a few months, residence times for intermediate water (50–200 m) on the order of half a year, and residence times for the deep water of about one year [6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call