The alumina and zirconia surfaces were pretreated with chemical etching using alkaline mixtures of ammonia, hydrogen peroxide and sodium hydroxide, and followed with application of the powder layer of Ca-deficient hydroxyapatite (CDH). The influence of etching bath conditions time and concentration on surface development, chemical composition and morphology of medicinal ceramic powders were studied. The following analyses were performed: morphology (scanning electron microscopy), phase composition (X-ray diffraction analysis), changes in binding interactions and chemical composition (FT-Infrared and Energy dispersive spectroscopies). Both types of etchants did not expose the original phase composition changes or newly created phases for both types of ceramics. Subsequent decoration of the surface with hydroxyapatite revealed differences in the morphological appearance of the layer on both ceramic surfaces. The treated zirconia surface accepted CDH as a flowing layer on the surface, while the alumina was decorated with individual CDH aggregates. The goal of this study was to focus further on the ceramic fillers for polymer-ceramic composites used as a biomaterial in dental prosthetics.