The in situ chemical immobilization method reduces the activity of heavy metals in soil by adding chemical amendments. It is widely used in farmland soil with moderate and mild heavy metal pollution due to its high efficiency and economy. However, the effects of different materials depend heavily on environmental factors such as soil texture, properties, and pollution levels. Under the influence of lead–zinc ore smelting and soil acidification, Cd is enriched and highly activated in the soils of northwestern Guizhou, China. Potato is an important economic crop in this region, and its absorption of Cd depends on the availability of Cd in the soil and the distribution of Cd within the plant. In this study, pot experiments were used to compare the effects of lime (LM), apatite (AP), calcite (CA), sepiolite (SP), bentonite (BN), and biochar (BC) on Cd accumulation in potatoes. The results showed that the application of LM (0.4%), AP (1.4%), and CA (0.4%) had a positive effect on soil pH and cations, and that they effectively reduced the availability of Cd in the soil. In contrast, the application of SP, BN, and BC had no significant effect on the soil properties and Cd availability. LM, AP, and CA treatment strongly reduced Cd accumulation in the potato tubers by controlling the total ‘flux’ of Cd into the potato plants. In contrast, the application of SP and BN promoted the migration of Cd from the root to the shoot, while the effect of BC varied by potato genotype. Overall, calcareous materials (LM, CA, and AP) were more applicable in the remediation of Cd-contaminated soils in the study area.