Abstract

Underground mines embroil several occupational hazards, including airborne dust generation from various mining operations. Line-of-sight remote Load Haul Dumper (LHD) mucking is adopted to draw the blasted muck from unsupported open stopes in underground metalliferous mines. Assessment of particulate matter (PM) concentrations and remote LHD operator's exposure is crucial for devising appropriate dust control measures. In this study, PM generated due to mucking in longhole open stope by line-of-sight remote LHD during downcast airflow was measured using real-time aerosol spectrometers. The particulate concentrations at upstream and downstream of dust source were analysed for various particle sizes as well as occupational dust types, such as alveolic and thoracic. The airborne dust concentration of ≤ 10μm (PM10), ≤ 5μm, and ≤ 1μm (PM1) size at operator's location in downstream was measured 71.3%, 28.5%, and 3.0%, respectively. The alveolic and thoracic dust types, respectively, were determined 25.1% and 74.2% in downstream and 48.9% and 84.6% in upstream total airborne dust concentration (311 ± 246μg/m3). Dilution of airborne dust generated due to muck sliding inside the stope was analysed with time. Moreover, dust concentrations under typical airflow scenarios encountered in open stope were simulated using Ventsim software to identify the potential dust exposure hazard for remote LHD operator. The simulation revealed that downcast airflow causes maximum exposure of harmful airborne dust for remote LHD operator. This study enhanced the understanding of exposure potential of airborne dust during remote LHD mucking. Moreover, it emphasised adoption of tele-remote-operated LHD and automated mucking operation in open stopes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call