Chloroplast plays a crucial role in all photosynthetic plants and converts the light energy to chemical energy. It is a semi-autonomous organelle and is mostly controlled by its own genome and partly by the nuclear imports. To replicate its own genome, it uses two DNA polymerases, viz. polymerases IA and IB. DNA polymerase IA showed 72.45% identity to polymerase IB, but only 35.35% identity to the E. coli DNA polymerase I. Multiple sequence alignment (MSA) analysis have shown that the DNA polymerases IA and IB and the E. coli DNA polymerase I possess almost identical active sites for polymerization and proofreading (PR) functions, suggesting their possible common evolutionary origin. The nuclear-encoded RNA polymerase (NEP) is imported from the nucleus and involves in the transcription of all the four subunits of the chloroplast RNA polymerase. The polymerase catalytic core of the DNA polymerases IA, IB and the NEP are remarkably conserved and is in close agreement with other DNA/RNA polymerases reported already, and possess a typical template-binding pair (-YG-), a basic catalytic amino acid (K) to initiate catalysis and a basic nucleotide selection amino acid R at -4 from K. The DNA polymerases IA and IB are very similar to prokaryotic DNA polymerases, except in possessing a zinc-binding motif (ZBM) in them, like the eukaryotic replicases. Interestingly, the PR exonucleases of all three polymerases belong to the DEDD-superfamily of exonucleases. The DNA polymerases IA and IB belong to the DEDD(Y)-subfamily, whereas the NEP belongs to the DEDD(H)-subfamily.
Read full abstract