Abstract

The midgut of lepidopteran larvae is a multifunctional tissue that performs roles in digestion, absorption, immunity, transmission of pathogens and interaction with ingested various molecules. The proteins localized at the inner apical brush border membrane are primarily digestive proteases, but some of them, like aminopeptidase N, alkaline phosphatase, cadherins, ABC transporter C2, etc., interact with Crystal (Cry) toxins produced by Bacillus thuringiensis (Bt). In the present study, aminopeptidase N (APN) was characterized as Cry-toxin-interacting protein in the larval midgut of castor semilooper, Achaea janata. Transcriptomic and proteomic analyses revealed the presence of multiple isoforms of APNs (APN1, 2, 4, 6 and 9) which have less than 40% sequence similarity but show the presence of characteristic 'GAMENEG' and zinc-binding motifs. Feeding a sublethal dose of Cry toxin caused differential expression of various APN isoform. Further, 6thgeneration Cry-toxin-exposed larvae showed reduced expression of APN2. This report suggests that A. janata larvae exploit altered expression of APNs to overcome the deleterious effects of Cry toxicity, which might facilitate toxin tolerance in the long run.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.