Routinely, experiments on tunneling molecular junctions report values of conductances (GRT) and currents (IRT) measured at room temperature. On the other hand, theoretical approaches based on simplified models provide analytic formulas for the conductance (G0K) and current (I0K) valid at zero temperature. Therefore, interrogating the applicability of the theoretical results deduced in the zero-temperature limit to real experimental situations at room temperature (i.e., GRT ≈ G0K and IRT ≈ I0K) is a relevant aspect. Quantifying the pertaining temperature impact on the transport properties computed within the ubiquitous single-level model with Lorentzian transmission is the specific aim of the present work. Comprehensive results are presented for broad ranges of the relevant parameters (level's energy offset ε0 and width Γa, and applied bias V) that safely cover values characterizing currently fabricated junctions. They demonstrate that the strongest thermal effects occur at biases below resonance (2|ε0| - δε0 - 0.3 ≲ |eV| - 0.3 ≲ 2|ε0|). At fixed V, they affect an ε0-range whose largest width δε0 is about nine times larger than the thermal energy (δε0 ≈ 3πkBT) at Γa → 0. The numerous figures included aim to convey a quick overview on the applicability of the zero-temperature limit to a specific real junction. In quantitative terms, the conditions of applicability are expressed as mathematical inequalities involving elementary functions. They constitute the basis of a proposed interactive data-fitting procedure, which aims to guide experimentalists interested in data processing in a specific case.
Read full abstract