Abstract

There is a number of contradictory findings with regard to whether the theory describing easy-plane quantum antiferromagnets undergoes a second-order phase transition. The traditional Landau-Ginzburg-Wilson approach suggests a first-order phase transition, as there are two different competing order parameters. On the other hand, it is known that the theory has the property of self-duality which has been connected to the existence of a deconfined quantum critical point (DQCP). The latter regime suggests that order parameters are not the elementary building blocks of the theory, but rather consist of fractionalized particles that are confined in both phases of the transition and only appear-deconfine-at the critical point. Nevertheless, many numerical MonteCarlo simulations disagree with the claim of a DQCP in the system, indicating instead a first-order phase transition. Here we establish from exact lattice duality transformations and renormalization group analysis that the easy-plane CP^{1} antiferromagnet does feature a DQCP. We uncover the criticality starting from a regime analogous to the zero temperature limit of a certain classical statistical mechanics system which we therefore dub frozen. At criticality our bosonic theory is dual to a fermionic one with two massless Dirac fermions, which thus undergoes a second-order phase transition as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.