摘要 给出一般非线性发展方程构造Wronskian解的间接法. 根据Young图运算的性质给出了文中命题的证明, 并讨论了置换群特征标与Young图表达式系数间的关系. 关键词: 非线性发展方程 / Wronskian解 / Young图 / 特征标 Abstract In this paper, we give indirect methods constructed Wronskian solution of a general nonlinear evolution equations. Under the properties of the computing of Young diagram we have proved the proposition of this paper and discuss the relationship between the permutation group character and Young diagram expressions coefficient. Keywords: nonlinear evolution equations / Wronskian determinant solution / Young diagram / irreducible character 作者及机构信息 成建军, 张鸿庆 1. 大连理工大学数学科学学院, 大连 116024 基金项目: 国家自然科学基金(批准号: 51109031, 50921001, 50909017)、教育部基金(批准号: 20100041120037)、中央高校基本科研业务费 (批准号: DUT12LK34, DUT12LK52)和 江苏省研究生科研创新计划(批准号: CXZZ12_0815)资助的课题. Authors and contacts Cheng Jian-Jun, Zhang Hong-Qing 1. School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51109031, 50921001, 50909017), the Program ofMinistry of Education of China (Grant No. 20100041120037), the Fundamental Research Fund for the Central Universities, China (Grant Nos. DUT12LK34, DUT12LK52), and the Postgraduate Research and Innovation Project of Jiangsu Province, China (Grant No. CXZZ12_0815). 参考文献 [1] Ablowitz M J, Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform (Cambridge: Cambridge University Press) [2] Rogers C, Shadwick W R 1982 Bäcklund Transformation and Their Application (New York: Academic Press) [3] Zhang H Q, Fan E G, Lin G 1998 Chin. Phys. 7 649 [4] Matveev V B, Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer) [5] Hirota R 1971 Phys. Rev. Lett. 27 1192 [6] Freeman N C, Nimmo J J C 1983 Phys. Lett. A 95 1 [7] Hirota R, Tang 1986 J. Phys. Soc. Jpn. 55 2137 [8] Zhang S Q 2008 Acta Phys. Sin. 57 1335 (in Chinese) [张善卿 2008 物理学报 57 1335] [9] OHTA Y 2003 J. Nonlinear Math. Phys. 10 143 [10] Bogoyavlenskii O I 1990 Lett. Nuovo. Cimento. Math. USSR. Izv. 34 245 [11] Toda K, Yu S J, Fukuyama F 1999 Rep. Math. Phys. 44 247 [12] Yan Z Y, Zhang H Q 2002 Comput. Math. Appl. 44 1430 [13] Tian B, Zhao K Y, Gao Y T 1997 Int. J. Engng. Sci. 35 1081 [14] Calogero F, Degasperis A 1976 Nuovo. Cimento. B 32 201 [15] Elwakil S A, El-labany S K, Zahran M A, Sabry R 2003 Z. Naturforsch. A 58 39 [16] Estvez P G, Hernaez G A 2000 J. Phys. A 33 2131 [17] Yan Z Y 2003 Czech. J. Phys. 53 89 [18] Gilson C R, Nimmo J J C 1993 Phys. Lett. A 180 337 [19] Qu C Z 1996 Theor. Phys. 25 369 施引文献
Read full abstract